Jet energy correction using weights on calorimeters readout for 20 GeV jets.

Irina Vardanian, Olga Kodolova

+ All calculations were carried out with CMSIM120

Calorimeter geometry:

Barrel: ECAL+HB1+HB2+HB3 + tailcatcher

Endcap: ECAL+HE1+HE2+HE3

Calibration constants for HCAL (determined for E_T =50 GeV pions):

Barrel: 118E5,147E5,147E5,150E5

Endcap: 156E5,220E5,220E5

Energy threshold for ECAL:

Barrel: E_T=30 MeV/crystal

Endcap: E=150 MeV/crystal

+ CALIBRATION PROCEDURE

• qq were generated with PYTHIA datacards: MSEL=0

MSUB(12)=1 (qqbar-qqbar)

CKIN(3)=20, CKIN(4)=30 (20-30GeV)

CKIN(13) = CKIN(15) = -0.087

CKIN(14)=CKIN(16)=0.087

- jets were found on generation level with simple cone algorythm (PYCELL)
- jets were found in calorimeter with modified window algorithm using default calibration coefficient.

— minimisation of functional:

$$S = \sqrt{\frac{\sum_{j \in I_i}^{nevent} \langle E_{jet_i}^{rec} - E_{jet_i}^{gen} \rangle^2}{nevent - 1}}$$

was performed for 20-30 GeV PTbin with η around 0. and for cone size=0.5.

$$E_{jet_{i}}^{rec} = \alpha ECAL + \sum \beta_{j} HB_{j} + \sum \gamma_{j} HE_{j}$$

 \times Obtained weights (only α , β_1 and β_2 were optimized, all other weightes were fixed):

PTbin=20-30 GeV

cone size=0.5: E_T^{jet} max=15-25 GeV

$$E_{T}^{jet}$$
=18.85+-4.23 GeV

without calibration: $E_T^{jet}=17.22+-4.45$ GeV

with calibration: $E_T^{jet}=18.87+-4.44 \text{ GeV}$

 $\alpha = 1.2014, \beta_1 = 0.7837, \beta_2 = 0.8901$

Erec jet/Egen jet

With coef.

With coef.

(Egen-Erec)/Erec 9.51%

0.053%

No significant jet energy resolution improvment (calculation with RMS and MEAN gives from 44% to 25% because of tails, calculations with FIT values gives 23% with and without coefficient)

Difference between mean energy of reconstructed jet and mean energy of generated jet is 0.053% for 18 GeV jets (instead of 9.2%) for cone 0.5.